Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity.

نویسندگان

  • D Jonathan Horsford
  • Minh-Thanh T Nguyen
  • Grant C Sellar
  • Rashmi Kothary
  • Heinz Arnheiter
  • Roderick R McInnes
چکیده

During vertebrate eye development, the cells of the optic vesicle (OV) become either neuroretinal progenitors expressing the transcription factor Chx10, or retinal pigment epithelium (RPE) progenitors expressing the transcription factor Mitf. Chx10 mutations lead to microphthalmia and impaired neuroretinal proliferation. Mitf mutants have a dorsal RPE-to-neuroretinal phenotypic transformation, indicating that Mitf is a determinant of RPE identity. We report here that Mitf is expressed ectopically in the Chx10(or-J/or-J) neuroretina (NR), demonstrating that Chx10 normally represses the neuroretinal expression of Mitf. The ectopic expression of Mitf in the Chx10(or-J/or-J) NR deflects it towards an RPE-like identity; this phenotype results not from a failure of neuroretinal specification, but from a partial loss of neuroretinal maintenance. Using Chx10 and Mitf transgenic and mutant mice, we have identified an antagonistic interaction between Chx10 and Mitf in regulating retinal cell identity. FGF (fibroblast growth factor) exposure in a developing OV has also been shown to repress Mitf expression. We demonstrate that the repression of Mitf by FGF is Chx10 dependent, indicating that FGF, Chx10 and Mitf are components of a pathway that determines and maintains the identity of the NR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF.

During vertebrate eye development, the optic vesicle is partitioned into a domain at its distal tip that will give rise to the neuroretina, and another at its proximal base that will give rise to the pigmented epithelium. Both domains are initially bipotential, each capable of giving rise to either neuroretina or pigmented epithelium. The partitioning depends on extrinsic signals, notably fibro...

متن کامل

Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10.

The homeodomain transcription factor Chx10 is one of the earliest markers of the developing retina. It is required for retinal progenitor cell proliferation as well as formation of bipolar cells, a type of retinal interneuron. or(J) (ocular retardation) mice, which are Chx10 null mutants, are microphthalmic and show expanded and abnormal peripheral structures, including the ciliary body. We sho...

متن کامل

Chx10 Consolidates V2a Interneuron Identity through Two Distinct Gene Repression Modes.

During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated ...

متن کامل

Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina.

Chx10/Vsx2 and Vsx1 are the only Paired-like CVC (Prd-L:CVC) homeobox genes in the mouse genome. Both are expressed in the retina and have important but distinct roles in retinal development. Mutations in Chx10/Vsx2 cause reduced retinal progenitor cell (RPC) proliferation and an absence of bipolar cells, while mutations in Vsx1 impair differentiation of cone bipolar cells. Given their structur...

متن کامل

Control of lens development by Lhx2-regulated neuroretinal FGFs.

Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2005